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ABSTRACT

Nanotechnology requires a new field termed nanomanipulation to deal with how to
handle components and structures in hanometer scale by utilizing devices with high
positioning accuracy and dexterous motion of the end-effector and controlling exter-
nal forces with sensory feedback, which has been enabled by the invention of bio-cell
manipulation, optical fibers alignment, micro device assembly, and scanning probe
microscopes. This thesis presents a general dynamics and vibration control method
of a class of parallel or hybrid robots at first. The dynamic equations of a class of
parallel/hybrid manipulators are developed using Kane’s method. Secondly, this the-
sis presents a 3-PUU parallel platform by using the general dynamics and control
method. A mixedH,/H, controller is obtained using LMI control toolbox of MAT-

LAB. The results of the time history responses and selected frequency responses of
the moving platform along each axis are given to show the isolation effect due to the

good performance of designed controller.

Furthermore, given the advantages of parallel manipulators and compliant manipula-
tors, a 3-PUPU parallel manipulator with flexure hinges at all joints has been devel-
oped to provide micro positioning manipulation in a large workspace and an active vi-
bration isolation for future possible applications in tracking cells, cell injection, crystal
growth experiment in specific acceleration level, and so on. The procedure of kine-
matics modeling of the macro parallel mechanism system is presented via the stiffness
model and Newton-Raphson method because of adopting a kind of wide-range flexure
hinge, then the dynamics model is established using Kane’s method for the micro mo-
tion system. The optimization of the designed mechanism is investigated by using the
optimization toolbox of MATLAB for multivariable nonlinear function, GA and PSO
method. Moreover, four control strategies using LQR, H., and mixedH,/H,

method for the active vibration isolation function have been introduced. The isolation



effects have been presented by using the obtained LHQRH., and mixedH,/ H
controllers. By using the obtained LQR/, H., controllers, the vibration responses

of the moving platform which are decreased about 2-3 orders of magnitude are very
ideal. And the mixedH,/H., controller is the best controller which can achieve a
perfect performance both for the time-domain and frequency-domain with attenuating

the external vibration about 15-16 orders of magnitude.

Next, an experimental system is built to implement the micro positioning and active
vibration control using a 3-UPU compliant parallel manipulator with flexure hinges
using two designed connecting pieces. The structures are built through mounting
three PZT actuators between two flexible hinges. The micro positioning and active
vibration control system is set up using National Instruments MATLAB/SIMULINK
XPC target Real-Time Module. A MIMO-PID control strategy for micro positioning
function has been utilized to improve the accuracy of the end-effector. The maximal
tracking error can be reduced to a very ideal value. Moreover, an improved prototype
with auxiliary assembly parts and new experimental setup are constructed. Eventually,
active vibration control experiments are conducted for the manipulator moving with
different frequency vibration, and experimental results demonstrate that the vibrations

acting on the base and the moving platform are significantly reduced.

At the end of the thesis, a new 6-DOF 8-PSS/SPS compliant dual redundant platform
is designed in order to improve the performance of the ultimate bearing capacity of
the system. The redundant 8-PSS/SPS platform is expected to achieve either high
accurate positioning or rough positioning as well as a 6-DOF active vibration isolation
and excitation to the payload placed on the moving platform. The investigations will
provide suggestions to improve the structure and control algorithm optimization for a
compliant dual redundant parallel mechanism in order to achieve the feature of larger

workspace, higher motion precision and better dynamic characteristics.
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