Design and Analysis of an Electro-Hydro-Mechanical Variable Valve Actuator for Four-Stroke Automobile Engines

Tam Kuok San

FACULTY OF SCIENCE AND TECHNOLOGY

UNIVERSITY OF MACAU

Design and Analysis of an Electro-Hydro-Mechanical Variable Valve Actuator

for Four-Stroke Automobile Engines

by

Tam Kuok San

A thesis submitted in partial fulfillment of the requirements for the degree of
MSc in Electromechanical Engineering
Faculty of Science and Technology University of Macau 2011
7= 98 =0 - 18
老 胞 大口
澳門大學

Approved by		
	Supervisor	
Program Authorized to offer Degree		
-		
Date		

In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Macau, I agree that the Library and the Faculty of Science and Technology shall make its copies freely available for inspection. However, reproduction of this thesis for any purposes or by any means shall not be allowed without my written permission. Authorization is sought by contacting the author at

Address: Pátio de Chôn Sau No. 24 R/C Telephone: +853 66815371 E-mail: coopertam@gmail.com

Abstract

Design and Analysis of an Electro-Hydro-Mechanical Variable Valve Actuator for Four-Stroke Automobile Engines

By Tam Kuok San (M-A0-6210-7)

Thesis supervisor: Prof. Wong Pak Kin

Department of Electromechanical Engineering, Faculty of Science and Technology

In modern four-stroke automobile engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel and simple electro-hydro-mechanical fully variable valve actuator (EHMFVVA) for engine valves is introduced. Just like the conventional mechanical variable valve actuators, a camshaft is still used the design; however, it is employed to provide input hydraulic pulses to drive the engine valves cyclically. The output valve profile is controlled electronically by a common proportional pressure relief valve, and hence Late-Valve-Opening + Early-Valve-Closing + Variable-Max-Valve-Lift can be achieved. The construction of the mathematical model of the variable valve system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydro-mechanical variable valve actuator can achieve fully variable valve timing and lift control without using complex control systems. Incorporated with the proposed system, the performance of four-stroke engines at different speeds and loads will be significantly increased.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
NOMENCLATURE
ACKNOWLEDGMENT11
CHAPTER 1 INTRODUCTION12
1.1 Project Objectives
CHAPTER 2 System design
CHAPTER 3 Mathematic model and dynamic analysis
CHAPTER 4 Simulation and experimental results
4.1 Simulations
4.2 Experiments
4.3 System response for constant load and different engine speed
4.4 System response for constant engine speed and different loads
4.5 Simulation of valve strategy for fully variable valve timing and lift control
CHAPTER 5 Discussion of results
CHAPTER 6 Design comparison
CHAPTER 7 Conclusions
7.1 Recommedations for future work
Reference
Publications related to this study

LIST OF FIGURES

Number	Pe	age
Figure 1	Schematic diagram of a novel electro-hydro-mechanical fully variable valve	
	actuation system.	. 15
Figure 2	Dynamic model of EHMFVVA	. 19
Figure 3	Input cam profile	. 25
Figure 4	Simulation block diagram for poppet valve displacement	. 25
Figure 5	System prototype and test rig	. 27
Figure 6	Interconnection between the input/output devices of the test rig and the	
	prototype EHMFVVA	. 28
Figure 7	Valve profiles at 60% engine load and different engine speeds	. 30
Figure 8	Valve acceleration at 4000 rpm and 60% engine load	. 31
Figure 9	Valve profiles at 5000 rpm and different engine loads	. 32
Figure 10	Simulation of valve strategy for fully variable valve timing and lift control	
	at 100% engine load	. 33

LIST OF TABLES

Number		Page
Table 1	Simulation parameters of the prototype system	26
Table 2	Comparison between the present EHMFVVA system and typical EHFVVT	
	system	36

NOMENCLATURE

- A_1 Cross-section area of the master-cylinder piston (m²)
- A_2 Cross-section area of the valve-cylinder piston (m²)
- A_c Cross-section area of check valve orifice (m²)
- A_r Cross-section area of pressure relief valve orifice (m²)
- C_d Discharge coefficient of valve orifice
- C_{tp1} Leakage coefficient of the master cylinder (m³/Pa·s)
- C_{tp2} Leakage coefficient of the valve cylinder (m³/Pa·s)
- D Tappet lift (m)
- d Hydraulic pipe diameter (m)
- d_p Poppet valve diameter (m)
- *F* Load on poppet valve (N)
- F_0 Preload in the master-cylinder spring (N)
- F_{co1} Sliding friction on the master-cylinder piston (N)
- F_{co2} Sliding friction on the valve-cylinder piston (N)
- F_{pre} Preload in valve spring (N)
- F_{r1} Friction force on the master-cylinder piston (N)
- F_{r2} Friction force on the valve-cylinder piston (N)
- F_{st1max} Maximum static friction force on the master-cylinder piston (N)
- F_{st2max} Maximum static friction force on the valve-cylinder piston (N)
- ΔF_1 Resultant force on the master-cylinder piston (N)
- ΔF_2 Resultant force on the valve-cylinder piston (N)

- g Acceleration of gravity = 9.81 m/s^2
- K_g Stiffness of valve spring (N/m)
- K_1 Stiffness of the master-cylinder spring (N/m)
- K' Gain of proportional pressure relief valve (Pa/V)
- l_2 Length of hydraulic pipe (m)
- m_1 Mass of the master-cylinder piston (kg)
- m_2 Mass of the valve-cylinder piston (kg)
- P_0 Set pressure (Pa)
- P_1 Operating pressure in the master cylinder (Pa)
- P_2 Operating pressure in the valve cylinder (Pa)
- P_L Residual gas pressure in combustion chamber (Pa)
- ΔP Pressure drop along the pipe of the valve cylinder (Pa)
- Q_1 Hydraulic flow generated by the master cylinder (L/min)
- Q_2 Hydraulic flow into the valve cylinder (L/min)
- Re Reynolds number
- *r* Base circle radius of input cam (m)
- V_1 Initial volume of the master cylinder (m³)
- V_2 Initial volume of the valve cylinder (m³)
- v_2 Flow velocity in the pipe of the valve cylinder (m/s)
- X_1 Cam lift (m)
- X_2 Piston displacement of the master cylinder (m)
- X_3 Piston displacement of the valve cylinder (i.e. displacement of engine poppet valve) (m)

E. M. R.C.

 α Camshaft angular displacement (rad)

- β_e Bulk modulus of hydraulic medium (Pa)
- θ Crank angle (rad)
- λ Hydraulic flow drag coefficient
- μ Proportional valve control signal (V)
- $\nu\,$ Kinematic viscosity of hydraulic medium (m²/s)
- ρ Density of hydraulic medium (kg/m³)
- ω Angular frequency of camshaft (rev/s)

ACKNOWLEDGEMENT

The author would like to thank Prof. Wong Pak Kin and Mr. Li Ke of University of Macau for their support.

