A Generalized 3D Pulse Width Modulator for Multi-level Voltage Source Inverters in Three-phase Four-wire Power Systems

by

Dai Ning-Yi

A Thesis submitted for the fulfillment of the requirements of the Degree of

DOCTOR OF PHILOSOPHY (Ph.D.)

in

ELECTRICAL AND ELECTRONICS ENGINEERING

Faculty of Science and Technology
University of Macau

June 2007
A Generalized 3D Pulse Width Modulator for Multi-level Voltage Source Inverters in Three-phase Four-wire Power Systems

Dai Ning Yi

Department of Electrical and Electronics Engineering
Faculty of Science and Technology
University of Macau
Av. Padre Tomás Pereira S. J., Taipa, Macao, China

Copyright© 2007 Dai Ning Yi

* This work has been financially supported by the Research Committee of University of Macau.
In presenting this thesis in fulfillment of the requirements for a Ph.D degree at the University of Macau, I agree that the Library and the Faculty of Science and Technology shall make its copies freely available for inspection. However, reproduction of this thesis for any purposes or by any means shall not be allowed without my written permission. Authorization is sought by contacting the author at

Address: Room 201, No.26 DongBaiGuoYuan, Nanjing, Jiangsu, P.R.China
Telephone: 86-25-83400872
Fax: N/A
E-mail: dainingyi@263.net

Signature ______________________
Date ________________________
ABSTRACT

A GENERALIZED 3D PULSE WIDTH MODULATOR FOR MULTI-LEVEL VOLTAGE SOURCE INVERTERS IN THREE-PHASE FOUR-WIRE POWER SYSTEMS

by Ning-Yi Dai

Thesis Supervisor: Prof. Ying-Duo Han
Co-Supervisor: Dr. Man-Chung Wong
Electrical and Electronics Engineering

The three-phase four-wire voltage source inverters (VSIs) with a neutral wire connection are important for power electronic applications in power distribution systems, such as three-phase four-wire active power filters, uninterruptible power supply, etc. For the medium and large capacity applications, a multi-level three-phase four-wire VSI is a better solution than a two-level one. Since the increase of the inverter levels results in a fast increase of the number of the power switches to be controlled, the implementation of the pulse width modulation (PWM) for multi-level three-phase four-wire VSIs is one of the most challenging tasks, which also directly affects the performance of the whole system.

Three-leg centre-split inverters and four-leg inverters are two most widely used three-phase four-wire VSIs. Firstly, a detailed comparison is carried out between the two topologies, mainly focusing on the output capability, control complexity as well as costs. In this study, the result indicates that two-level four-leg VSI is preferred in low-voltage applications, especially when large neutral current needs to be manipulated. However, for medium and large capacity applications, multi-level three-leg centre-split VSIs are more preferable due to lower cost and less switching devices to be controlled.

Since a neutral wire connection is provided and the zero-sequence output needs to be manipulated, 3-dimensional (3D) PWM methods need to be proposed for the three-phase four-wire VSIs. A 3D space vector modulation (SVM) in the α-β-0 coordinates for multi-level three-leg centre-split VSIs is firstly proposed in this study. By decomposing the reference voltage vector, the time-consuming multi-level SVM issue is simplified to a
two-level case, and the procedure for implementing the two-level 3D SVM is further simplified. As a result, the 3D direct PWM is proposed in this study. The complex mid-steps of the 3D SVM, such as determining neighboring vectors, calculating dwell times, are all eliminated in the novel 3D direct PWM.

By introducing a shifting voltage to modify the reference, the 3D direct PWM is further extended to control four-leg VSIs. Therefore, a generalized 3D direct PWM is proposed in this study, which can achieve PWM for controlling three-leg centre-split VSIs and four-leg VSIs with greatly reduced computational cost. The proposed generalized 3D direct PWM can also be applied to control three-phase three-wire VSIs to track balanced reference voltages. The same output voltage range can be achieved by the 3D direct PWM and the conventional 2D SVM. Simulation results are provided to show the validity of the proposed 3D direct PWM.

A FPGA-based generalized 3D pulse width (PW) modulator is designed and tested based on the generalized 3D direct PWM in this work. Prototypes of a two-level three-leg VSI, a two-level four-leg VSI and a three-level three-leg neutral-point-clamped VSI are implemented. Experimental results are given to show the validity of the generalized 3D PWM in controlling three-phase four-wire VSIs to track given balanced and unbalanced reference voltages.

The FPGA-based generalized 3D PW modulator can be embedded in the control system of different applications, where a three-phase four-wire VSI needs to be controlled. The prototypes of three-phase four-wire active power filters are developed, in which the three-phase four-wire VSIs are used as the core units. Experimental results show that current harmonics, reactive currents and neutral currents can be compensated simultaneously by an APF using my proposed generalized 3D PW modulator.
KEY WORDS

3D Direct PWM

3D Pulse Width Modulator

Active Power Filter

Four-leg Voltage Source Inverter

Multi-level Voltage Source Inverter

Three-leg Centre-split Voltage Source Inverter

Three-phase Four-wire Power Systems
iv
ACKNOWLEDGEMENTS

Many people have contributed to the completion of this work. First of all, I would like to express my hearty and profound gratitude to my two supervisors - Prof. Han Ying Duo and Dr. Wong Man-Chung, for having opened my vision and brought me into this challenging and worthwhile research realm in power electronics. I especially appreciate them for their immensely inspirational and patient guidance, continuous support throughout both my M.Sc. and Ph. D. studies.

The colleagues in my research group – Mr. Chi-Seng Lam, Mr. Fan Ng, Mr. Ming-Hui Zhan, Mr. Sin-Un Tai, Ms. Booma Devi Sekar and Mr. Io-Keong Lok – worth my particular gratitude for their help and fruitful talks during my study. An extraordinary word of thanks must be delivered to Mr. Fan Ng and Mr. Ming-Hui Zhan for their assistance in implementing and testing the prototypes.

I thank the professors and staffs from the Faculty of Science and Technology (FST) – Prof. Rui Martins, Prof. Ming-Chui Dong, Dr. Mang-I Vai, Mr. Chi-Kong Wong, Dr. Mak Peng Un and Mr. Cheang Sek Un – for their kindly help in many ways smoothing the progress of my study.

I would also like to thank my friends Chen Pei, Tang Yao, Pan Na, Xu Huan and all the other friends I met in Macau. Thank you for your continuously encouragement and support. You make my life in Macau full of happiness.

Last, but certainly not least, I wish to render my utmost gratitude to my parents and my lovely half Wang Rong, for their constant understanding, endless support, care and encouragement.

Dai Ning Yi

June 2007
LIST OF ABBREVIATIONS

APF. ACTIVE POWER FILTER
ASIC. APPLICATION-SPECIFIC INTEGRATED CIRCUIT
ASD. ADJUSTABLE SPEED DRIVE
BJT. BIPOLAR JUNCTION TRANSISTORS
CMN. COMMON MODE NOISE
CSI. CURRENT SOURCE INVERTER
DFACTS. DISTRIBUTION FLEXIBLE AC TRANSMISSION SYSTEM
DSP. DIGITAL SIGNAL PROCESSOR
DVR. DYNAMIC VOLTAGE RESTORER
EV. EVENT MANAGE
FACTS. FLEXIBLE AC TRANSMISSION SYSTEM
FPD. FIELD PROGRAMMABLE DEVICE
FPGA. FIELD PROGRAMMABLE GATE ARRAY
GTO. GATE TURN-OFF
HVDC. HIGH VOLTAGE DIRECT CURRENT TRANSMISSION
IGBT. INSULATED GATE BIPOLAR TRANSISTOR
IPEM. INTELLIGENT POWER ELECTRONICS MODULE
IPM. INTELLIGENT POWER MODULE
MCU. MICROCONTROLLER
MOS. METAL OXIDE SEMICONDUCTOR
MOSFET. METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTORS
PCB. PRINTED CIRCUIT BOARD
PCC. POINT OF COMMON COUPLING
PLD. PROGRAMMABLE LOGIC DEVICE
PWM. PULSE WIDTH MODULATION
SHE. SELECTIVE HARMONIC ELIMINATION
STATCOM. STATIC SYNCHRONOUS COMPENSATORS
SVM. SPACE VECTOR MODULATION
TDD. TOTAL DEMAND DISTORTION
THD. TOTAL HARMONIC DISTORTION
RMS. ROOT MEAN SQUARE
UPQC. UNIFIED POWER QUALITY COMPENSATOR
UPS. UNINTERRUPTIBLE POWER SUPPLY
VHDL. VHSCH HARDWARE DESCRIPTION LANGUAGE
VLSI. VERY-LARGE-SCALE INTEGRATION
VSI. VOLTAGE SOURCE INVERTER
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Key Words</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Power electronics technologies and applications</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Introduction to power electronics development</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Power electronics applications</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Three-phase four-wire active power filters</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Switch-mode DC-AC inverters</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 Introduction to dc-ac inverters</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Single-phase voltage source inverters</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Voltage source inverters in three-phase three-wire systems</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4 Voltage source inverters in three-phase four-wire systems</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Pulse width modulation</td>
<td>11</td>
</tr>
<tr>
<td>1.3.1 Introduction to PWM</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2 Hysteresis PWM and SVM</td>
<td>13</td>
</tr>
<tr>
<td>1.3.3 Development of 3D PWM</td>
<td>14</td>
</tr>
<tr>
<td>1.4 Pulse width modulators</td>
<td>15</td>
</tr>
<tr>
<td>1.5 Research goals and challenges</td>
<td>17</td>
</tr>
<tr>
<td>1.6 Organization of the thesis</td>
<td>18</td>
</tr>
<tr>
<td>1.7 Research contributions and publications</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER 2: Modeling and Analysis of Three-phase Voltage Source Inverters</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Realization of 3D coordinates for three-phase systems</td>
<td>21</td>
</tr>
</tbody>
</table>
2.3 Modeling and comparisons of two-level VSIs .. 24
 2.3.1 Modeling of two-level VSIs ... 24
 2.3.2 Space vectors of two-level VSIs .. 28
 2.3.3 Comparison of two-level three-phase four-wire VSIs 32
2.4 Modeling and comparisons of multi-level VSIs .. 34
 2.4.1 Modeling of three-level three-phase four-wire VSIs 34
 2.4.2 3D space vectors of three-level three-phase four-wire VSIs 36
 2.4.3 Comparisons of three-level three-phase four-wire VSIs 39
 2.4.4 Multi-Level three-phase four-wire VSIs ... 40
2.5 Summary ... 41

CHAPTER 3: Generalized 3D Direct PWM .. 43
3.1 Introduction ... 43
3.2 3D SVM for multi-level three-leg centre-split VSIs 44
 3.2.1 3D SVM methods ... 44
 3.2.2 Generalized 3D SVM in the α-β-0 coordinates 44
 3.2.3 3D SVM in the a-b-c coordinates ... 52
3.3 3D direct PWM for multi-level three-leg centre-split VSIs 54
 3.3.1 3D direct PWM .. 54
 3.3.2 Over-modulation issues for 3D direct PWM ... 56
 3.3.3 Simulation results ... 58
3.4 3D direct PWM for four-leg VSIs ... 65
 3.4.1 3D SVM for two-level four-leg VSIs .. 65
 3.4.2 3D direct PWM for four-leg VSIs ... 66
 3.4.3 Simulation results ... 72
3.5 3D direct PWM for three-phase three-wire VSIs .. 78
 3.5.1 3D direct PWM for three-phase three-wire VSIs 78
 3.5.2 Simulation results ... 81
3.6 Generalized 3D direct PWM ... 87
3.7 Summary ... 89

CHAPTER 4: Generalized 3D pulse width modulator 91
4.1 Introduction ... 91
4.2 Design of the FPGA-based 3D PW modulator ... 91
4.2.1 Introduction to the FPGA ...91
4.2.2 Design of the FPGA-based 3D PW modulator.................................93
4.2.3 Testing the FPGA-based 3D PW modulator....................................100

4.3 Experimental circuits ..103
4.3.1 Switching devices ...103
4.3.2 Design of the drive circuits..104

4.4 Experimental results ..106
4.4.1 Introduction to the experimental system configurations106
4.4.2 Experimental results of three-leg centre-split VSIs108
4.4.3 Experimental results of a two-level four-leg VSI112
4.4.4 Experimental results of three-phase three-wire VSIs115

4.5 Summary ..117

CHAPTER 5: Applications of 3D Direct PWM in Three-phase Four-wire
APFs ..119
5.1 Introduction ..119
5.2 Three-phase four-wire APF prototypes ..119
5.2.1 System configurations of three-phase four-wire APFs119
5.2.2 Sampling circuits ..121
5.2.3 Algorithms for reference voltage determination122
5.2.4 Programs of the digital signal processor ..124

5.3 Experimental results of three-phase four-wire APFs125
5.3.1 Three-phase four-wire APF using a two-level centre-split VSI125
5.3.2 Three-phase four-wire APF using a two-level four-leg VSI126
5.3.3 Three-phase four-wire APF using a three-level centre-split VSI127

5.4 Summary ..129

CHAPTER 6: Conclusions and Future Studies ...131
6.1 Thesis conclusions ...131
6.2 Suggestions for future studies ...132

Bibliography ...135

Appendix A: Photos of Prototypes ..143
Appendix B: Source Code of FPGA-based 3D PW Modulator 145
Appendix C: Source Code of DSP .. 159
LIST OF FIGURES

Fig. 1-1 Summary of power semiconductor device capabilities... 1
Fig. 1-2 Classification of switching converter topologies and structures................................. 2
Fig. 1-3 System configuration of the APF... 6
Fig. 1-4 (a) Half-bridge inverter (b) Single-phase full-bridge inverter 9
Fig. 1-5 Topology of the two-level three-phase full-bridge inverter.. 9
Fig. 1-6 Topology of the three-level NPC inverter.. 10
Fig. 1-7 Topology of the two-level three-leg centre-split inverter 10
Fig. 1-8 Topology of the two-level four-leg inverter... 11
Fig. 1-9 Carrie-based sinusoidal PWM .. 12
Fig. 1-10 Hysteresis pulse width modulation ... 13
Fig. 1-11 PWM control structures of digital ac drives: (a) analog, (b) DSP-based digital control, and (c) ASIC/FPGA-based digital control. ... 16
Fig. 2-1 Transformation basis allocation .. 23
Fig. 2-2 Two-level three-leg inverters.. 24
Fig. 2-3 Two-level three-leg centre-split inverters... 25
Fig. 2-4 Two-level four-leg inverters... 27
Fig. 2-5 Mode 1 when switching function of S_f is +1 ... 27
Fig. 2-6 Mode 2 when switching function of S_f is -1 ... 27
Fig. 2-7 One-leg inverter in mode 2 ... 27
Fig. 2-8 Space vectors allocation of two-level inverter on the α-β plane 29
Fig. 2-9 3D voltage vectors allocation of two-level three-leg centre-split inverters 30
Fig. 2-10 3D voltage vectors allocation of two-level four-leg inverters 31
Fig. 2-11 Topologies of three-level centre-split VSI in three-phase four-wire systems 34
Fig. 2-12 Model of a three-level three-leg centre-split VSI .. 35
Fig. 2-13 Topology of a three-level four-leg VSI... 36
Fig. 2-14 Model of a three-level four-leg VSI .. 36
Fig. 2-15 Model of a three-level four-leg VSI with S_{0y} turned on 36
Fig. 2-16 3D space vectors allocation of a three-level three-leg centre-split VSI.............. 38
Fig. 2-17 Space vector allocation on the α-β plane of a three-level VSI 38
Fig. 3-1 Equivalent model for a three-leg N-level voltage source inverter 45
Fig. 3-2 Space vectors allocation of two-level vectors in the α-β-0 coordinates 47
Fig. 3-3 Projection of space vector allocation of two-level vectors on the α-β plane.....47
Fig. 3-4 Flow chart of the section determination ..48
Fig. 3-5 PWM output for one sampling period ..51
Fig. 3-6 Flow chart of the 3D SVM ...51
Fig. 3-7 Decomposition of reference voltage vector ...52
Fig. 3-8 Flow chart of the 3D direct PWM method ...56
Fig. 3-9 Simulation system configuration ..59
Fig. 3-10 Three-phase balanced reference voltages ..59
Fig. 3-11 Simulation results of a two-level centre-split inverter with balanced references
(a) output voltages and reference voltages (b) harmonic spectrum of output
voltages of phase A (c) output voltage across the loads and currents passing
through the loads ..60
Fig. 3-12 Simulation results of a three-level centre-split inverter with balanced references
(a) output voltages and reference voltages (b) harmonic spectrum of output
voltage of phase A (c) output voltage across the loads and currents passing
through the loads ..61
Fig. 3-13 Simulation results of a five-level centre-split inverter with balanced references
(a) output voltages and reference voltages (b) harmonic spectrum of output
voltage of phase A (c) output voltage across the loads and currents passing
through the loads ..61
Fig. 3-14 Three-phase unbalanced reference voltages ..62
Fig. 3-15 Simulation results of a two-level three-leg inverter with unbalanced references
(a) output voltages and reference voltages (b) the voltages across the loads and
the currents passing through the loads ...63
Fig. 3-16 Simulation results of a three-level centre-split inverter with unbalanced
references (a) output voltages and reference voltages (b) the voltages across
the loads and the currents passing through the loads ...64
Fig. 3-17 Simulation results of a five-level three-leg centre-split inverter with unbalanced
references (a) output voltages and reference voltages (b) the voltages across
the loads and the currents passing through the loads ...64
Fig. 3-18 Two-level four-leg voltage source inverter ..66
Fig. 3-19 Output pulse widths and effective times ...67
Fig. 3-20 PWM output pulses for case 1 and case 2 (a) \(v_{\text{min}}=v_{ff}\) (b) \(v_{\text{max}}=v_{ff}\)69
Fig. 3-21 Shifting voltage of three-phase balanced output voltages71
Fig. 3-22 Simulation results of a two-level four-leg inverter with balanced references (a) reference voltages of each leg (b) output voltages of each leg (c) output and reference phase-to-neutral voltages (d) harmonic spectrum of output phase-to-neutral voltage v_{af} (e) output voltage across the loads and currents passing through the loads. .. 73

Fig. 3-23 Simulation results of a three-level four-leg inverter with balanced references (a) reference voltages of each leg (b) output voltages of each leg (c) output and reference phase-to-neutral voltages (d) harmonic spectrum of output phase-to-neutral voltage v_{af} (e) output voltage across the loads and currents passing through the loads... 74

Fig. 3-24 Simulation results of a two-level four-leg inverter with unbalanced references (a) reference voltages of each leg (b) output voltages of each leg (c) output voltages and reference voltages (d) the voltages across the loads and the currents passing through the loads.. 76

Fig. 3-25 Simulation results of a three-level four-leg inverter with unbalanced references (a) reference voltages of each leg (b) output voltages of each leg (c) output voltages and reference voltages (d) the voltages across the loads and the currents passing through the loads.. 77

Fig. 3-26 Rising-edge aligned PWM outputs .. 78

Fig. 3-27 Two-level three-phase three-wire VSI ... 80

Fig. 3-28 Simulation system configuration .. 82

Fig. 3-29 Simulation results of a two-level three-phase three-wire VSIs when filtering capacitor is 35uF (a) phase-to-neutral reference voltages and output voltages of the inverter (b) output voltage across the loads and currents passing through the loads ... 83

Fig. 3-30 Simulation results of a three-level three-phase three-wire VSIs when filtering capacitor is 35uF (a) phase-to-neutral reference voltages and output voltages of the inverter (b) output voltage across the loads and currents passing through the loads ... 84

Fig. 3-31 Output voltage across the loads and currents passing through the loads of a three-level three-phase three-wire VSIs when filtering capacitor is 10uF ... 84

Fig. 3-32 Simulation results of a four-level three-phase three-wire VSIs (a) phase-to-neutral reference voltages and output voltages of the inverter (b) output voltage across the loads and currents passing through the loads...... 85
Fig. 3-33 Simulation results of a five-level three-phase three-wire VSIs (a) phase-to-neutral reference voltages and output voltages of the inverter (b) output voltage across the loads and currents passing through the loads 86

Fig. 3-34 Simulation results of a three-level three-phase three-wire VSIs with unbalance references (a) phase-to-phase reference voltages (b) output voltage across the loads and currents passing through the loads (c) phase-to-phase reference voltages and output voltages of the converter (d) phase-to-phase output voltage across the loads and currents passing through the loads 87

Fig. 3-35 Flow chart of the generalized 3D direct PWM.. 88

Fig. 4-1 FPGA EVM board... 93

Fig. 4-2 Block diagram of the generalized PW modulator ... 94

Fig. 4-3 Numbering of switches.. 97

Fig. 4-4 Generating the trigger signals for one-leg of a three-level VSI 99

Fig. 4-5 Reference voltages.. 100

Fig. 4-6 Dead times of output trigger signals... 100

Fig. 4-7 Trigger signals of one leg of a two-level VSI (a) pure sine wave reference (b) harmonic injection reference ... 101

Fig. 4-8 Trigger signals of one leg of a three-level VSI (a) pure sine wave reference (b) harmonic injection reference ... 102

Fig. 4-9 Trigger signals of one leg of a four-level VSI (a) pure sine wave reference (b) harmonic injection reference ... 102

Fig. 4-10 Trigger signals of one leg of a five-level VSI (a) pure sine wave reference (b) harmonic injection reference ... 103

Fig. 4-11 IPM module (a) appearance (b) Structure of the dual IPM model 104

Fig. 4-12 Driver circuits for IPM module (a) schematic (b) PCB................................. 105

Fig. 4-13 Block diagram of the control system... 106

Fig. 4-14 System configuration of the experimental system... 107

Fig. 4-15 Three-phase balanced reference voltage... 107

Fig. 4-16 Three phase unbalanced reference voltage.. 108

Fig. 4-17 Balanced output voltage of two-level three-leg centre-split inverter 109

Fig. 4-18 Balanced load voltage and current of a two-level three-leg centre-split VSI 109

Fig. 4-19 Unbalanced output voltages of a two-level three-leg centre-split VSI...... 109

Fig. 4-20 Unbalanced load voltages and currents of a two-level three-leg centre-split VSI .. 110
Fig. 4-21 Balanced output voltage of a three-level centre-split VSI 111
Fig. 4-22 Balanced load voltage and current of a three-level centre-split VSI 111
Fig. 4-23 Unbalanced output voltage of a three-level centre-split VSI 111
Fig. 4-24 Unbalanced load voltage and current of a three-level centre-split VSI 112
Fig. 4-25 Balanced output voltages of a two-level four-leg VSI................................. 113
Fig. 4-26 Balanced output phase-to-neutral voltages of a two-level four-leg VSI 113
Fig. 4-27 Balanced load voltages and currents of a two-level four-leg VSI 113
Fig. 4-28 Unbalanced output voltages of a two-level four-leg VSI.............................. 114
Fig. 4-29 Unbalanced output phase-to-neutral voltages of a two-level four-leg VSI... 114
Fig. 4-30 Unbalanced load voltages and currents of a two-level four-leg VSI 114
Fig. 4-31 Load voltages and currents of a two-level three-phase three-wire VSI.... 116
Fig. 4-32 Load voltages and currents of a three-level three-phase three-wire VSI..... 116
Fig. 5-1 System configuration of the APF prototypes.. 120
Fig. 5-2 The transducer boards ... 121
Fig. 5-3 The schematic figure of the signal conditioning circuits 121
Fig. 5-4 Block diagram of the control system of the APF ... 123
Fig. 5-5 Flow charts of the program (a) main program (b) interrupt service routine ... 124
Fig. 5-6 Three-phase four-wire APF using a two-level three-leg centre-split VSI 125
Fig. 5-7 Source and neutral currents before compensation .. 126
Fig. 5-8 Source and neutral currents after compensation .. 126
Fig. 5-9 Three-phase four-wire APF using a two-level four-leg VSI 127
Fig. 5-10 Current compensation APF using a two-level four-leg VSI 127
Fig. 5-11 Three-phase four-wire APF using a three-level centre-split VSI 128
Fig. 5-12 Load currents ... 128
Fig. 5-13 Source current after compensation using a three-level centre-split VSI 129
Fig. 5-14 Reactive power compensation (a) voltage and load current (b) voltage and
source current after compensation ... 129
LIST OF TABLES

Table 1-1 Power electronics applications ... 3
Table 1-2 Custom power devices ... 5
Table 1-3 Current distortion limits for general distribution systems (120V through
69000V) ... 7
Table 2-1 Voltage vectors of the two-level three-leg VSI 29
Table 2-2 3D voltage vectors of the two-level centre-split VSI 30
Table 2-3 3D voltage vectors of the two-level four-leg VSIs 31
Table 2-4 Switching functions and state of each switch .. 35
Table 2-5 3D voltage vectors of the three-level centre-split VSI 37
Table 2-6 Comparisons of three-phase four-wire VSIs 41
Table 3-1 Boundary conditions, neighboring vectors and dwell times in the α-β-0
coordinates ... 49
Table 3-2 Parameters of two-level 3D voltage vectors ... 50
Table 3-3 Boundary conditions, neighboring vectors and dwell times in the a-b-c
coordinates ... 53
Table 3-4 Parameters in simulation ... 59
Table 3-5 Simulation results of three-leg centre-split VSIs with balanced references ... 62
Table 3-6 Simulation results of three-leg centre-split VSIs with unbalanced references . 65
Table 3-7 Simulation results of the four-leg VSIs with balanced references 75
Table 3-8 Simulation results of the four-leg VSIs with unbalanced references 75
Table 3-9 Simulation results of three-phase three-wire VSIs 82
Table 4-1 Switching table of a three-level VSI .. 98
Table 4-2 Parameters of the experimental system ... 107
Table 4-3 Parameters of reference voltages ... 107
Table 4-4 Experimental results of a two-level three-leg centre-split VSI 108
Table 4-5 Experimental results of a three-level tenter-split VSI 110
Table 4-6 Experimental results of a two-level four-leg VSI 112
Table 4-7 Experimental results of a two-level four-leg VSI after modifying the references .. 115
Table 4-8 Experimental results of three-phase three-wire VSIs 115
Table 5-1 Compensation results of APF when a three-level centre-split VSI is used... 129