Bioremoval Kinetics of toluene and trichloroethylene mixture by *Burkholderia vietnamiensis* G4

by

Dong Shanshan (Emily)

A thesis submitted for partial fulfillment of the requirements for the degree of

Master of Civil Engineering

2012

Faculty of Science and Technology
University of Macau
Bioremoval Kinetics of toluene and trichloroethylene mixture by *Burkholderia vietnamiensis* G4

by

Dong Shanshan (Emily)

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Civil Engineering

Faculty of Science and Technology
University of Macau

2012

Approved by ________________________________ Prof. H. Shim
Supervisor

Date ________________________________
In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Macau, I agree that the Library and the Faculty of Science and Technology shall make its copies freely available for inspection. However, reproduction of this thesis for any purposes or by any means shall not be allowed without my written permission. Authorization is sought by contacting the author at

Telephone: (853) 62106705
E-mail: emilydongss@gmail.com

Signature ______________________

Date __________________________
CONTENT

VITA .. iv

ABSTRACT ... vi

LIST OF FIGURES ... viii

LIST OF TABLES .. x

ACKNOWLEDGEMENTS .. xiii

Chapter 1: Introduction ... 1

Chapter 2: Literature Review .. 3

Chapter 3: Materials and Methods .. 6

3.1 Microbial Culture ... 6

3.1.1 Chemicals ... 6

3.1.2 Bacterial Strain .. 6

3.1.3 Culture Mediums ... 6

3.1.4 Culture Conditions .. 7

3.2 Experimental Design ... 11

3.3 Analytical Methods ... 11

3.3.1 Sampling .. 12

3.3.2 Measurements ... 12

3.4 Kinetics ... 15
Chapter 4: Results and Discussions ... 17

4.1 Kinetics of initial TCE concentrations towards Bioremoval of toluene/TCE mixture .. 17

4.1.1 Bioremoval of toluene/TCE mixture with initial optical density 1 microbial culture .. 17

4.1.1.1 Comparisons of Bioremoval of toluene/TCE mixture in MCl and MSM .. 17

4.1.1.2 Bioremoval of toluene/TCE mixture with hydrogen peroxide ... 18

4.1.1.3 Bioremoval of toluene/TCE mixture with PAC 19

4.1.1.4 Conclusion ... 20

4.1.2 Bioremoval of toluene/TCE mixture with initial optical density 3 microbial culture .. 20

4.1.2.1 Comparisons of Bioremoval of toluene/TCE mixture in MCl and MSM .. 20

4.1.2.2 Bioremoval of toluene/TCE mixture with hydrogen peroxide ... 21

4.1.2.3 Bioremoval of toluene/TCE mixture with PAC 22

4.1.2.4 Conclusion ... 23

4.2 Kinetics of Initial toluene concentrations towards Bioremoval of toluene/TCE mixture .. 23
4.2.1 Bioremoval of toluene/TCE mixture with initial optical density 1 microbial culture ... 24

4.2.1.1 Bioremoval of toluene/TCE mixture in MCI and MSM 24

4.2.1.2 Bioremoval of toluene/TCE mixture with hydrogen peroxide ... 25

4.2.1.3 Bioremoval of toluene/TCE mixture with PAC.................... 26

4.2.1.4 Conclusion .. 27

4.2.2 Bioremoval of toluene/TCE mixture with initial optical density 3 microbial culture ... 27

4.2.2.1 Comparisons of Bioremoval of toluene/TCE mixture in MCI and MSM ... 27

4.2.2.2 Bioremoval of toluene/TCE mixture with hydrogen peroxide ... 28

4.2.2.3 Bioremoval of toluene/TCE mixture with PAC.................... 29

4.2.2.4 Conclusion .. 30

Chapter 5: Conclusion .. 31

Chapter 6: Suggestion for Future Research .. 33

Bibliography ... 34

Appendix ... 39
VITA

Dong Shanshan (Emily) was born in Beijing on 26 December 1987. She graduated from Yao Hua high school in Tianjin in the year of 2005 and received the degree of Bachelor of Science in Civil Engineering from University of Macau in the year of 2010. She continued her studies since then at the University of Macau and did her master degree under the supervision of Professor Hojae Shim.

Related Publications:

Journal paper:

Conference/Symposium Presentation:

ABSTRACT

Bioremoval Kinetics of toluene and trichloroethylene mixture by *Burkholderia vietnamiensis* G4

by

Dong Shanshan (Emily)

Thesis Supervisor: Prof. H. Shim
Master of Science in Civil Engineering

Toluene is one of the BTEX (benzene, toluene, ethylbenzene, and xylenes) which, also known as methylbenzene is a clear, water-insoluble liquid with the typical smell of paint thinners, redolent of the sweet smell of the related compounds benzene. Toluene is an aromatic hydrocarbon which is widely used as an industrial feedstock as a solvent.

Trichloroethylene (TCE) is a chlorinated aliphatic hydrocarbon (CAH) that has been widely used as an ingredient in industrial cleaning. TCE is one of the most frequently detected contaminants in groundwater which considered as a suspected carcinogen.

Trichloroethylene (TCE) can be co-metabolic degraded under aerobic condition using toluene as growth substrate. Study of *Burkholderia vietnamiensis* G4 has demonstrated aerobic co-metabolic TCE degradation. Using bioremediation technology to remove TCE is considered as a cost-effective method compared to chemical treatment.
The objective of this study is to investigate the bioremoval kinetics of toluene/TCE mixture using *B. vietnaiensis* G4. Studies were performed on different parameters (toluene/TCE concentrations, microbial inoculation amount, hydrogen peroxide concentration and percentage of powdered activated carbon). Different toluene concentrations at 20, 50 mg/L and TCE concentration at 0.2 mg/L were used. Microbial inoculation amount with initial optical density 1 and 3 were used. DO concentrations caused by hydrogen peroxide and PAC 1% & 3% (w/v) were considered. Depending on the conditions, specific growth rate and half saturation constant were considered to analyze the bioremoval kinetics.

Investigating the kinetics of contaminates with their detailed fates/behaviors during bio-removal process is essential even before the remediation technology can be applied on site for the successful remediation of contaminated environment. Since the kinetics of cometabolism are not entirely understood and can be quite complex, this kind of study can be good candidates for bioremediation of the wastes-contaminated sites.
LIST OF FIGURES

Figure 3.1: pH meter (pHS-25) ... 8
Figure 3.2: Autoclave (LDZX-50KBS) .. 8
Figure 3.3: Centrifuge (5430R, eppendorf) .. 9
Figure 3.4: Spectrophotometer (UV mini 1240, Shimadzu) ... 9
Figure 3.5: Serum bottle and its accessories ... 10
Figure 3.6: Orbital shaker (JINGDA, HZQ-C)) .. 10
Figure 3.7: Gas chromatograph (Agilent, 6890N) .. 14
Figure 3.8: Amber vial and its accessories ... 14
Figure 3.9: Ion chromatograph (Dionex ICS 2500, Dionex Corporation, USA).............. 15
Figure 4.1: Effects of TCE 0.5 mg/L on specific growth rate of toluene/TCE mixture with
initial OD1 microbial culture ... 45
Figure 4.2: Effects of TCE 0.5 mg/L on degradation rate of toluene/TCE mixture with
initial OD1 microbial culture ... 45
Figure 4.3: Effects of TCE 1 mg/L on specific growth rate of toluene/TCE mixture with
initial OD1 microbial culture ... 46
Figure 4.4: Effects of TCE 1 mg/L on degradation rate of toluene/TCE mixture with
initial OD1 microbial culture ... 46
Figure 4.5: Effects of TCE 1.5 mg/L on specific growth rate of toluene/TCE mixture with
initial OD1 microbial culture ... 47
Figure 4.6: Effects of TCE 1.5 mg/L on degradation rate of toluene/TCE mixture with
initial OD1 microbial culture ... 47
Figure 4.7: Effects of TCE 0.5 mg/L on specific growth rate of toluene/TCE mixture with
initial OD3 microbial culture ... 48
Figure 4.8: Effects of TCE 0.5 mg/L on degradation rate of toluene/TCE mixture with
initial OD3 microbial culture ... 48
Figure 4.9: Effects of TCE 1 mg/L on specific growth rate of toluene/TCE mixture with
initial OD3 microbial culture ... 49
Figure 4.10: Effects of TCE 1 mg/L on degradation rate of toluene/TCE mixture with initial OD3 microbial culture

Figure 4.11: Effects of TCE 1.5 mg/L on specific growth rate of toluene/TCE mixture with initial OD3 microbial culture

Figure 4.12: Effects of TCE 1.5 mg/L on degradation rate of toluene/TCE mixture with initial OD3 microbial culture

Figure 4.13: Effects of toluene 50 mg/L on specific growth rate of toluene/TCE mixture with initial OD1 microbial culture

Figure 4.14: Effects of toluene 50 mg/L on degradation rate of toluene/TCE mixture with initial OD1 microbial culture

Figure 4.15: Effects of toluene 100 mg/L on specific growth rate of toluene/TCE mixture with initial OD1 microbial culture

Figure 4.16: Effects of toluene 100 mg/L on degradation rate of toluene/TCE mixture with initial OD1 microbial culture

Figure 4.18: Effects of toluene 150 mg/L on degradation rate of toluene/TCE mixture with initial OD1 microbial culture

Figure 4.19: Effects of toluene 50 mg/L on specific growth rate of toluene/TCE mixture with initial OD3 microbial culture

Figure 4.20: Effects of toluene 50 mg/L on degradation rate of toluene/TCE mixture with initial OD3 microbial culture

Figure 4.22: Effects of toluene 100 mg/L on degradation rate of toluene/TCE mixture with initial OD3 microbial culture

Figure 4.23: Effects of toluene 150 mg/L on specific growth rate of toluene/TCE mixture with initial OD3 microbial culture

Figure 4.24: Effects of toluene 150 mg/L on degradation rate of toluene/TCE mixture with initial OD3 microbial culture
LIST OF TABLES

Table 1: Physico-chemical properties of cis-DCE, TCE, and BTEX (adapted from Lawrence, 2007; NSTC, 1997; Roberts, 2008) ... 39
Table 4.1: Effects of TCE concentrations on toluene bioremoval ... 40
Table 4.2: Effects of toluene concentrations on TCE bioremoval .. 41
Table 4.3: Kinetic Parameters of toluene degradation on TCE concentrations 42
Table 4.4: Kinetic Parameters of TCE degradation on toluene concentrations 43
Table 4.5: Kinetics towards TCE concentrations on toluene as substrates 44
LIST OF ABBREVIATIONS

BDL Below Detection Limit
BH medium Bushnell-Haas medium
CAHs Chlorinated Aliphatic Hydrocarbons
MCl Chloride free mineral medium
Concn Concentration
DMF Dimethylformamide
DO Dissolved Oxygen
EPA Environmental Protection Agency
FID Flame Ionization Detector
GC Gas Chromatography
HPLC-MS High-performance Liquid Chromatography-Mass Spectrometry
IC Ion Chromatography
μL Microliter
mL Milliliter
M, mol Molarity
MSM Mineral Salts Medium
NB Nutrient Broth
OD Optical Density
ORE Overall Removal Efficiency
ppb parts per billion, μg/L
ppm parts per million, mg/L
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAC</td>
<td>Powdered Activated Carbon</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>TCE</td>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume / Volume</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile Organic Compounds</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight / Volume</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight / Weight</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the people who have spent their effort and patience assisting me to finish my master thesis successfully. The followings are my brief expressions to them.

I wish to express my great appreciate to my supervisor, Professor Hojae Shim, for all he has done for me throughout the years during my study at University of Macau. Throughout the research, I have learned a lot from Professor Shim not only in the academic field but also the attitude of working and living. His patient and guidance always encourages me to become a positive-thinking person and helps me to improve the skills of tackling problems theoretically and mentally. I would like to give my special thanks to Professor Shim for his teaching, helping, encourage and guidance during all these years.

Thanks to Professor Lok Man Hoi. His sincerity to act as the chairman in the examination committee is highly appreciated. Also his proficiency in examining this thesis helps to improve it considerably.

I would also like to thank Professor Shek-Kiu Chan. His help solidifies the content of this thesis considerably. His kind advice and guidance helps me to improve.

I truly appreciated Dr. Junhui Li (Tim). Tim gives me lots of helpful comments and suggestions on my research area and in my daily life. With his help, I find the way to setup my research and analysis the data. Thanks for his kind encouragement which gave me the strength to go forward.
I had the privilege of working along with many obliging graduate students: Mr. Guo Lei (Eric), Mr. Lu Qihong (Nick), Miss Chen Yiqin (Celery), Miss Ling Jiayin and Mr. Nip Saiwa (Edward). We have spent lots of memorable time in environmental lab and became good friends. With their kind company, I never felt lonely during the days I was working in lab.

Additional appreciation is expressed to Prof. Wookeun Bae, for his advice to my experimental work. And thanks are also extended to Mr. Kwon Kiwook and Mr. Oh Juhyun, for their appreciable, patient help and cooperation to my research work. With their kind help, I avoid from taking too many detours and then move forward steadily.

I should also appreciate University of Macau Research Committee & Macau Science & Technology Development Fund (FDCT) for their financial support.

Last but not least, special thanks are due to my family and friends who have been unconditionally supporting me all along the way with their love, patient and tolerance which gave me courage to stick at my study.

I sincerely wish them all the best as they continue in their future research endeavors, works and lives.